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Executive summary 

This report provides three ranked site recommendations for the future expansion of  the UNSW 
Field Station at Smiths Lake in NSW, Australia. Potential sites are suitable for accomodation and 
meet strict building and environmental constraints. 

Sites are within areas that are low cost to build, minimize the impact on conservation needs, 
minimize fire hazard risk, minimize the risk of  pollutant runoff  whilst maximizing the aesthetics 
of  the location. 

Site suitability is determined by performing building cost, conservation risk, fire hazard, soil 
erosion, and ranking models. These models utilize fuzzy logic to determine Goldilocks zones 
around key resources, such as roads and powerlines and the current field station. Fuzzy logic is 
also used to create minimum buffer zones around areas of  conservation concern, such as 
threatened fauna and flora, swamps, and natural drainage systems. 

Models utilise a range of  different datasets including the digital elevation model (DEM) 
generated from phase 1 of  this project as well as fuel load data, powerline data, vegetation 
classifications, roads, rivers, lakes, as well as various satellite images and photographs. All data is 
projected using the GDA94/MGA zone 56 coordinate system before use in the models. 

Fuzzy logic is used to combine the models to produce areas that meet all minimum requirements. 
The top 11 largest sites are then extracted from this and ranked based by size, view (aspect), fire 
hazard, soil erosion, solar radiation, proximity to the field station and conservation concern. 

The top three site recommendations are shown on next page. 
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I. Introduction 

The University of  New South Wales is seeking to expand the current field station at Smiths Lake, 

New South Wales, Australia. The new site will be close to the existing field station and within the 

range of  1500 metres. This place will be mainly used for accommodation purposes with the 

possibilities of  future development. The geographic location of  current station and the project 

scope is illustrated in Figure 1. 

Figure 1 Project Definition 

The aim of  this report is to identify site that have a low construction cost, low level of  fire hazard 

and low soil erodibility, while at the same time has minimal environmental impact on local flora 

and fauna. To achieve this, we utilised four key models that correspond to each requirement and 

then combined their results to obtain potential candidate sites. After that, we ranked all 

candidates and picked out the most favourable three options as our recommendations (Figure 2). 
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The primary software used in this project is arcGIS Desktop (version 10.6, Environmental 

Systems Research Institute, Inc.). 

 

Figure 2 Report Methodology 

II. Key datasets 

The primary data source is from the digital elevation model (DEM) generated from phase 1. This 

model was developed using the Australian National University Digital Elevation Model 

(ANUDEM) algorithm with the input of  contour data, river, coastline, water bodies and point 

elevation data (Hutchinson, 1988). Please see phase 1 consultancy for more details. Some 

additional data was also used in the development of  key models, such as fuel load data in the fire 

model and the powerline data in the building model. The source of  these data and their 

processing (if  any) are described in their respective sections. 

All datasets are projected using the Geocentric Datum of  Australia 1994 / Map Grid of  

Australia 1994 Zone 56 coordinate system (GDA94/MGA zone 56). This coordinate system is 
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used because it is the official map projection used by the NSW Government and recommended 

by the Surveyor General. 

III. Analysis 

Fuzzy logic 

In this project, we used the fuzzy logic to explain and categorise the outcomes of  each model. 

Fuzziness is a type of  imprecision that represents classes without a sharply defined boundary 

(Burrough & McDonnell, 1998). So those fuzzy sets cannot be predicted completely and only 

have some possibilities of  becoming one certain member of  a specific set. For example, we may 

confidently say the fire intensity is safe at one very low level and unsafe at another very high level, 

but we can only claim some possibilities for any value in between. This is a logical way to 

categorise those classes that are not binary or clearly defined. In the fuzzy logic, 0 is assigned to 

represent the locations that are not in the member set, and 1 is assigned to those locations that 

are definitely in the set. Any value between 0 and 1 represents a possibility of  a membership and 

the value of  the fuzzy membership indicates how likely it represents the class from the maximum 

value. 

We employed three types of  fuzzy membership functions in this report, which affects how we 

explain the values and their relationship between 0 and 1. In the linear fuzzy membership 

function, which is used in fire model and the erosion model, the data keeps a linear function 

between the minimum and maximum values. On the other hand, in the large and small fuzzy 

membership, the functions are not linear. In the fuzzy large function, the larger values are more 

likely to be member of  the set when they past the midpoint and in the fuzzy small function, 

smaller values past the midpoint are more likely in the membership. They have been used in our 

conservation model and building model. The basic concept of  these fuzzy membership functions  

are shown in Figure 3. 

Fuzzy small and large functions are useful in situations where the rate of  change rapidly increases 

as you approach the boundary threshold. For example, we might want to apply a fuzzy proximity 
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for access to a particular resource. Being at 40 metres is probably ok, and being at 60 is probably 

not ok. But being at 20 is still a little better than being at 40 and being at 80 is a little worse than 

being at 60. This is where linear models cannot be used. 

The fuzzy overlay function is the algorithm that combines the fuzzy membership functions from 

each model. In this project we used the “AND” fuzzy overlay that gets the minimum value from 

all input models. In this way, an input can only have a high value only if  all of  the outputs are 

high values. 

! ! !  
	 	 (a)	 	 	 	 (b)	 	 	 	    (c) 

Figure 3 Fuzzy membership functions: (a) linear, (b) small (c)  large 
(Source: ESRI) 

Fire Model 

The aim of  the fire model is to calculate fire intensity and then determine fire the hazard level 

within the project region. Fire intensity is a function of  the heat yield, fuel load and the rate of  

fire spread (Perry, 1998): 

!  

Where H is the heat yield of  fuel (J/g), W is fuel load (g/m2), and R is the rate of  fire spread. 

In this project, the H value represents eucalyptus fire, which is equivalent to 18,600 J/g 

(Fernandes, Barros, Anita, & Santos João, 2016). So the equation above can written as: 

!  
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The calculation of  fire spread rate (R) is based on McArthur Mk 5 Forest Fire Danger Meter and 

Mk 5 Grassland Fire Danger Meter. These two models are empirical fire behaviour models that 

derived from test fires and expressed as simple mathematical equations (Noble, Gill, & Bary, 

1980).  Roads and water bodies were firstly eliminated from the model by manually giving them a 

zero value of  fire spread rate. These areas were identified if  they have not specified a vegetation 

type and clearly look like roads or water bodies on the ESRI "World Imagery 2018" basemap. 

After that, we defined the forest areas to be those that have distinguishable tree types from the 

attribute table and then assumed the rest of  grids to be grassland as they have no specific tree 

types prescribed and do not within any waterbody or road. 

The Mk 5 Forest Fire Danger Meter calculates the rate of  fire spread R (km/h) on level ground 

by means of: 

!  

Where F is Forest Fire Danger Index and W is the fuel weight (t/ha). 

The forest danger index (F) is a function of  drought factor(D) ranged from 0 to 10 (Sirakoff, 

1985), relative humidity (RH, %), temperature (T, °C) and the average 10-metre open wind speed 

(U10, km/h). It can be calculated by: 

!  

Where: 

D: drought factor 

RH: relative humidity, % 

T: temperature, °C 

U10: average 10-metre open wind speed, km/h 

Similarly, McArthur Mk 5 Grassland Fire Danger Meter algorithms can be determined by the 

following equations (Noble, Gill, & Bary, 1980): 

!  
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Where F is the grassland fire danger index. 

To obtain the grassland fire danger index (F), the moisture content(MC, %) should be calculated 

first and the equation is written as: 

!  

Where: 

RH: Relative humidity, %. 

T: temperature, celsius. 

U10: average 10-m open wind speed, m/s 

C: Grass curing, % 

Then, for MC less than 18.8%, Grassland Fire Danger Index is written as: 

 !  

or for MC between 18.8% and 30%, the equation is: 

 !  

Where: 

U10: average 10-m open wind speed. km/h 

MC: moisture content, %. 

W: Fuel weight, t/ha. 

It is noticeable that in both forest and grassland algorithms, the fuel weight W is considered when 

calculating the rate of  fire spread R. The difference is that the forest incorporates fuel weight into 

the fire danger index (F) while the latter does not. With this consideration, the rate of  fire spread 

R is a function of  fuel weight W in Mk 5 Fire Danger Meter, and this is clearly different from Mk 

4 Fire Danger Meter where the standard fuel weight of  4.5 t/ha is applied. 

To obtain the Fire Danger Index F, we incorporated the climate data (Bureau of  Meteorology, 

Australia) of  “Forster - Tuncurry Marine Rescue” station (32.18° S, 152.51° E), which is the 
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closest station from project scope. We mimicked a “likely worst scenario” from past monthly 

climate statistics that combines historical record of  minimum mean 3pm relative humidity, 

maximum 3pm 10-m wind speed and highest temperature between 1999 and 2010. The drought 

factor is set to the maximum value of  10 and grass curing value is selected to be 80% arbitrarily. 

Based on the aforementioned methods, the rate of  forward spread (R, km/h) over level ground is: 

! (forest) 

!  (grassland) 

In addition, it is noticeable that fire will travel much faster upslope with prevailing wind than on 

the ground. For instance, a 5‐degree slope would increase the rate of  spread by 1/3, and a 10‐

degree slope double the rate (Yeo, Kepert, & Hicks, 2014). To justify this, Rθ is used to replace R 

in the fire intensity calculation and it can be described as: 

!  

where θ is the slope angle in degrees. 

So finally, the fire intensity (FI, kW/m) in both cases is calculated by: 

!  

The fire intensity indicates the amount of  energy (kW/m) released from headfire edge. Multiple 

studies in Australia, Canada, and the United States have shown that fire intensity less than 2000 

kW/m is the likely upper limit for direct attack by machines and air tankers while the fire 

intensity over 3500-4000 kW/m is hard to get effectively controlled (Hirsch & Martell, 1996). 

Therefore by using fuzzy logic, we selected the fire intensity value of  2000 kW/m as the safe 

threshold, 2000 - 3500 kW/m as the acceptable range, and any value over 3500 kW/m as the 

unacceptable range. 

The fire intensity model outcome is shown in Figure 4. The grid with red colour indicates a 

higher risk because of  the higher fire intensity, and that with green color indicates a lower risk. It 
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can be read from the map that majority of  this area has a high level of  fire hazard, with some 

scattered low hazard areas in the northeast, south and west side of  current field station.  

 

Figure 4 The output of  fire model 

Erosion Model 

As the new site is primarily for accommodation, domestic chemical and organic pollutants may 

be easily discharged into the water bodies if  location is chosen at somewhere with a high level of  

soil loss. Therefore, we employed a soil erosion model that can predict the annual soil loss by 

water in our project area. This model uses the Revised Universal Soil Loss Equation (RUSLE) 

and it calculates annual soil loss by water with six parameters (Rosewell, 1993): 

!  

Where: 

A: annual soil loss amount, tonne ha-1 year-1 

R: rainfall factor, MJ mm ha-1 h-1 year-1 
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K: average soil erodibility factor, ton ha h ha-1 MJ-1 mm-1,  

S: slope gradient 

L: slope length 

C: cover management factor 

P: support practice factor. 

The R value is determined by interpolating the rainfall factor map for Australia, and it is 

approximately 3500 MJ mm ha-1 h-1 year-1 . The K value is an indication of  soil erodibility. A 

value of  less than 0.02 indicates low soil erodibility and greater than 0.04 high soil erodibility 

(Rosewell, 1993). In our project, the K values are raster data derived from the soil texture data 

table (Rosewell, 1993) based on previous field survey. They fall between 0.014 and 0.054, 

indicating a highly variable pattern of  erodibility in the project area.  

Two topographic factors, slope gradient (S factor) and slope length (L factor) are represented in 

this model to quantify the effect of  slope. The S factor is calculated from the slope derived from 

DEM and proportional to the sine of  the slope with the power of  1.35 (Moore & Burch, 1986).  

!  

The L factor is defined as 

!  

Where: 

λ: flow accumulation times cell size (10m)  

m: exponent, 0.4. 

The C factor represents the surface vegetative resistance to erosion. This factor is estimated from 

other existing similar studies. In this project, we firstly categorised different landscapes based on their 

respective vegetation types in attribute table and then gave each category a unique C value. The value 

of  C factor is 0.004 for all forest type areas and 0.042 for grassland based on the tables from 

Rosewell(1993). The wetlands and water bodies are given the values of  0.05 and 0.01, respectively 

(Dawen, Shinjiro, Taikan, Toshio, & Katumi, 2003). The support practice factor P is set to 1, which is 

the default value that means no specific practice will be taken to change soil erodibility. Now that all 
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factors have been decided, the annual soil loss can be then calculated. Following the scales of  soil 

erosion map in Australia (Viscarra Rossel et al., 2016), the maximum soil loss level in this map is 25t 

ha-1 yr-1. 

However, it can be difficult to decide a certain soil loss tolerance solely from the erosion data. There 

are some previous studies trying to define a soil loss tolerance but very often, they vary case by case. A 

previous survey using Caesium-137 indicated a possible threshold of  0.5 t ha-1 yr-1 net soil loss and 

the average soil loss by water in Australia is 1.86 t ha-1 yr-1.(Loughran, Elliott, McFarlane, & 

Campbell, 2004). While these cutoffs are meaningful, it was too strict to apply on this project. In fact, 

there are existing residential areas adjacent to the project scope that have a soil loss of  more than 5 t 

ha-1 yr-1 on our model. Another factor to consider is that we did not incorporate any support 

practice, so the actual level of  soil loss might be lower than the model prediction. 

In view of  these, we employed a linear fuzzy membership with the maximum value of  10 t ha-1 

year-1 and the minimum value of  0.5 t ha-1 year-1. We intentionally made this criteria flexible as 

this was still a rough estimation, but still, only half  of  the areas represent a low level of  soil loss 

(Figure 5).   

Building Model 

The purpose of  the building model is to find a possible location that can minimise any 

construction costs. The building model helps achieve this by scoring 10m2 cells based on their 

relative building costs. In practice, the building costs are influenced by several factors, including 

local slope (gradient), proximity to roads (for vehicle access),  proximity to low voltage powerlines 

and proximity to existing UNSW field station. Therefore, we specified the following constraints 

following these restrictions: 1) Minimum 30m from sealed roads 2) Minimum 10m from unsealed 

roads 3) maximum of  1500m from current field station 4) Not too close to existing structures 5) 

Not too close to high voltage powerlines. For the latter two restrictions, we arbitrarily defined a 

minimum buffer size of  the existing structures to 10m (as we employed a 10m cell size) . We also 
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assumed that it is OK to build right next to low voltage powerlines and the building sites should 

be roughly within 100m of  road access and low voltage powerlines. 

In addition to key data sets described above, the source data consists of  roads, existing structures, 

slopes, powerlines and field station location. All source data was initially in or reprojected to GDA 

1994 MGA Zone 56 Coordinate System. The data type and data source and our additional 

processing is summarised in Table 2. 

Figure 5 The output of  erosion model 

Table 2 Data in building model 
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Data Data 
type

Source Processing

Roads Polyline Forests NSW Data Integration 
Program 1996 
GURAS Roads Update Program 
2010-2013 
NPWS Data Integration Program 
2010-2013 
RTA Classified Roads Integration 
Program 2001-2013 

Manually corrected with the aid of  a 
dataset of  GPS points created by 
2015 UNSW Field Trip students. The 
dataset were further split into two 
groups, sealed and unsealed. 

The roads data were verified by ESRI 
"World Imagery 2018" data and 
Google Streetview from 2008. 

It is assumed that the road surfaces 
have not changed since this data was 
captured.

Existing 
Structures

Polygon Created by manually tracing the 
outline of  structures visible on the 
ESRI "World Imagery 2018" 
basemap.

Only visually identifiable structures 
were selected. So structures that are 
completely under the canopy of  a tree 
cannot be seen from a satellite and 
would therefore be missing from this 
dataset.

Slope Raster Created using the Digital Elevation 
Model from phase 1 of  the project.

Powerlines Polyline Created by manually observing 
Esri "World Imagery 2018" and 
Google StreetView 2008 images. 

The high voltage constraint of  this 
project has been ignored as there are 
none within range of  the current site. 
Low voltage data cannot be directly 
seen in the Esri imagery, however 
powerlines also can only be installed 
in cleared land. So we define the 
powerline by observing straight 
cleared tracks. 
The routes of  the powerlines can be 
verified within StreetView by 
observing the powerlines leaving the 
road side and heading into these 
clearing. 

Field 
Station

Point Created based on the position 
suggested by Google Maps 2018 
data.
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The building model is a combination of  models incorporating these parameters and using small 

or large fuzzy membership. The models are summarised in Table 3 and shown in Appendix I. 

They are then combined into a single raster by running a fuzzy 'AND' overlay. This approach 

heavily penalised any area with at least 1 poor score and ensures that only those areas that meet 

all requirements are presented as acceptable (values closer to 1). 

Table 3 Fuzzy membership functions in building model 

The results of  the building model is shown in Figure 6. This Model produces two distinct areas 

that are relatively low cost. The first area is a along the southern banks of  Smiths Lake on either 

side of  the current field station. The second area is along the western road at the limit of  the 

acceptable 1500m building range. This regions is hillier and is often interrupted by unacceptably 

Data Restriction Fuzzy membership

Unsealed roads ≥ 10m Large, midpoint: 10m

Sealed roads ≥ 30m Large, midpoint: 30m

Existing structures ≥ 10m Large, midpoint: 10m

Slope rating ≥ 5° and ≤ 20° Linear, min: 5°, max: 20°. 
Inverted to ensure flat slopes receive a 
high mark (1) and steep slopes receive a 
low mark (0).

Low voltage powerline ≤ 100 m small, midpoint: 100m

All roads (Sealed and unsealed) ≤ 100 m small, midpoint: 100m

Proximity to current field station ≤ 1500 m Small, midpoint: 1500m 

A maximum cut off  of  1500m was also 
applied so that any area outside this 
range was marked “No Data” and was 
ignored in all further models.  

The midpoint was assigned to the 
maximum distance as we did not want to 
heavily penalise an area unless it was 
almost on the threshold.
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steep slopes. This model clearly excludes a number of  smaller roads as they do not have access to 

powerlines. 

 

Figure 6 The output of  building model 

Conservation model 

The aim of  the conservation model is to minimise any conservation issues at the site. This model 

helps achieve this by scoring all cells (10m x 10m) based on their level of  conservation concern. 

Generally speaking, conservation concerns are influenced by several factors. The new facility 

should not be too close to known locations of  threatened flora or fauna, or to drainage lines 

(rivers, streams and lakes). Besides, it is not suitable to build at places too close to mangroves, 

wetlands and swamps. 
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The source data include rivers, lakes (water bodies), vegetations and threatened mammals and 

flora data (Table 3). The wetlands and swampy areas are defined by their vegetation type in the 

ecological zone dataset and verified by Google StreetView and Esri "World Imagery". Despite 

this verification, the actual topography may vary. In addition, the areas with Swamp Mahogany 

and Swamp Oak vegetation types were excluded from the swamp category because those plants 

live in a versatile environment and we were unable to decide if  those areas are actually swamps. 

The vegetation dataset used in phase 1 was not useful in extracting swamp data as the 

descriptions appeared to be too vague to be useful. The area definitions from vegetation dataset 

also did not align with the observations of  the satellite imagery from Esri.  

The threatened mammals and flora datasets contain sightings of  endangered animals and plants 

but they are incomplete. Many sightings are only found immediately next to walking trails and 

not further inland. This could create the illusion of  endangered plants and animals not being in 

an area simply because there is no path there. However, we reply on a building model that 

require the site close to roads, so this was not be a great concern. And for some reasons, some 

sightings of  land animals are in lakes. They were later clipped out by the lake buffer in the 

combination model. 

Table 4 Data in conservation model 

Data Data type Source Processing

Rivers Polyline From phase 1

Lakes Polygon From phase 1

Mangroves Polygon Extracted from vegetation 
dataset of  phase 1
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Similar to the building model, we employed fuzzy membership functions that build four different 

buffer zones in respect of  each restriction (Table 5). After that, the obtained four buffer zone 

rasters are then combined into a single raster by running a fuzzy 'AND' overlay. This is to ensure 

that only those areas that meet all requirements are presented as acceptable (values close to 1) 

and any area with at least 1 poor score (close to 0) will not be prioritised.  

The results predicted by the conservation model is shown in Figure 7. It can be seen from the 

map that this conservation model primarily restricts potential site selection from the lake in the 

north and south west, as well as the large swamp complex south east of  the current field station. 

Due to the possible inaccuracy of  source swamp data and threatened species data, the model 

outcome can become drastically different if  these datasets are later refined or altered. 

Table 5 Fuzzy membership functions in conservation model 

Wetlands 
and swamps

Polygon Extracted from the ecological 
zone dataset of  phase 1 

Swamp, Saltmarsh Sedgeland and 
Rushland polygons were extracted 
from the ecological zone dataset. 
These data were verified by overlaying 
Esri "World Imagery". Swampy land 
was clearly visible from satellite 
images. 

Threatened 
fauna and 
and flora

Point Extracted from the 2015 Atlas of  
Living Australia data.

Data Data type Source Processing

Data Restriction Fuzzy membership

Rivers ≥ 10m Large, midpoint: 10m

Mangroves, wetlands and 
swamps

≥ 50m Large, midpoint: 50m

Lakes ≥ 10m Large, midpoint: 10m

! !20



 

Figure 7 The output of  conservation model 

Combination and site rankings 

Potential site recommendations are based on scores from the fire hazard model, soil erosion 

model, building cost model and conservation model. In addition to the above models, sites are 

further ranked by their aesthetic properties using solar radiation outcomes and aspect raster The 

top three candidates are then formally recommended. We arbitrarily specified the site size around 

10000 m2, which is equivalent to 100 cells on the raster data by definition. 

Threatened  fauna and and flora ≥ 50m Large, midpoint: 50m

Data Restriction Fuzzy membership
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The ranking system can be split into three sections: 

1) Combination Model: merging the previous four models into a single raster containing a 

score. 

2) Site Ranking Model: extracting distinct sites that meet a minimum score threshold then 

allocating a mean score for each criteria for each site. 

3) Site Tabulation Rankings: ranking the sites by their relative scores in each criteria. 

The combination model aims to integrate the fuzzy outcome of  previous four models. The fire 

model and erosion model output rasters were inverted to ensure that low fire hazard or soil 

erosion level is close to 1 and high level is close to 0. This transformation unifies the logic of  all 

models that a grid with higher value equals to better selection. After that, these two models were 

combined with building and conservation model by running a fuzzy 'AND' overlay. This is to 

ensure that only those areas that meet all requirements are presented as acceptable by selecting 

the minimum value. 

The site ranking model is built upon the outcome of  combination model (Figure 8). Those grids 

that have a score of  less than 0.3 are reclassified as “NoData” so that they are ignored in future 

analysis. After that, distinct sites were then extracted based on size. Two cells are considered to be 

part of  the same cite if  they share a N/S/E/W border. We then extracted the largest 11 sites that 

met the minimum scoring threshold. Ideal sites would be close to 10000m2  however the smallest 

candidate site is 4600m2 (Figure 9). Each candidate site was assigned a score based on the mean 

value of  each model output of  their respective areas. 

The site ranking table is then populated based on how each of  the 11 candidate sites scored 

relative to each other and assigned 0 to 11 by their rankings (Table 6). Sites were primarily 

differentiated by their size, building score, view/aspect, erosion and proximity to the current field 

station. As all sites had good view/aspect, solar radiation and very good conservation scores 

(except site 11), the outcome only relies on the total ranking score of  size, building cost, erosion 

and fire hazards. 
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Our final site selection is the top 3 sites (which has the lowest sum of  ranking) from Table 7 and 

their locations are shown in Figure 10. These sites are site 2, 3 and 5.  1

Table 6 Site ranking score criteria 

Figure 8 The output of  combination model 

Score Criteria

Building cost mean of  the Building Cost Model output raster cells 

Conservation mean of  the Conservation Model output raster cells 

Erosion mean of  the Erosion Model output raster cells

Fire mean of  the Fire Hazard Model output raster cells

Solar mean of  the Solar Radiation raster cells

Aspect mean of  the aspect raster cells

 As mentioned previously, Mahogany Swamp and Oak Swamp ecological zones are not included as part of  proper 1

swamps. If  they are, the top 3 sites would change to sites 2, the central third of  site 1 (as it is too large) and site 6.
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Table 7 Site ranking outcome 

Candi
date 

Size Build Fire Erosion Conserv
ation

Solar

Value Rank Value Rank Value Rank Value Rank Value Value

1 366 1 0.536 7 0.203 10 0.040 7 0.983 1381524

2 142 2 0.610 3 0.137 7 0.049 8 1.000 1362374

3 139 3 0.643 2 0.134 6 0.005 5 0.998 1393871

4 96 4 0.531 8 0.129 5 0.004 3 1.000 1378442

5 85 5 0.578 5 0.085 4 0.003 1 1.000 1391699

6 71 6 0.491 10 0.000 1 0.037 6 1.000 1397960

7 53 7 0.568 6 0.147 8 0.050 9 0.913 1349335

8 51 8 0.660 1 0.261 11 0.004 2 1.000 1377355

9 50 9 0.492 9 0.183 9 0.136 10 0.918 1429244

10 48 10 0.468 11 0.038 2 0.005 4 0.998 1392157

11 46 11 0.610 4 0.051 3 0.311 11 0.757 1389762
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Figure 9 The Candidate Sites 

 Figure 10 Recommended site locations 
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IV. Recommendations 

Our top recommendation is site 3 (dark grey), because it is fairly close to current station, with 

comparatively low fire hazard and soil erosion problem. Site 2 is the second choice as it has a 

slightly higher fire hazard and soil loss than site 3. Both locations have a large size for possible 

construction and a good view looking towards the lake. Site 5 ranks the third as it has a smaller 

size and higher building cost. But this is also a good choice as it is close to the road and has a 

much lower level of  fire hazard and soil erosion. The view at site 5 might not be so satisfactory. 

Even though it is facing the lake on the west, one needs to travel through a marsh to access the 

west lake or climb some hills to reach lake to the north. 
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Appendix I Building model  
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Appendix II Conservation Model 
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Appendix III Combined Model 
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Appendix IV Ranking Model 
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Appendix V  Powerline Clearing 

	 	   (a)	 	 	 	 	 	 	 	 (b) 

	 	 (c)	 	 	 	 	 	 	 	 (d) 

(a)(b): shows the powerline clearing from satellite images. This clearing is the criteria to decide 

low voltage powerlines. 

(c)(d): Google Street View for (a) and (b) 

Source: Google Maps
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